
1

CIS 555 FINAL PROJECT
POOGLE: PENN’S FAVORITE SEARCH ENGINE

Sanjay Paul, Levi Cai, Dan Kim, and Federico Nusymowicz

{sanjayp, cail, dki, fnusy}@seas.upenn.edu

Professor Andreas Haeberlen
ahae@seas.upenn.edu

ABSTRACT

Poogle is a search engine that runs on a distributed network of AWS machines. This paper
describes, analyzes and evaluates the Poogle system.

I. INTRODUCTION

A. Project Goals
We built Poogle with certain objectives in mind.

Our primary goals included:
• Efficiently crawling a large corpus
• Responding to several concurrent queries in a

timely fashion
• Providing a clean user interface
• Serving up high-quality search results
• Developing a highly scalable system able to

operate across a large network of peers

B. High-Level Approach
Our system operates in three distinct phases.

Phase 1 consists of a process that crawls the web,
and then indexes pages as they become available.
The second phase calculates PageRank for all
indexed content and readies the system to answer
queries efficiently. Finally, a third process
instantiates a server that answers user queries by
calculating document rankings and returning
search results in order of relevance. Figure 1
depicts the high-level approach.

Each of the processes relies upon a distributed
network of peer nodes. Individual nodes are
responsible for both running the modules and for
storing portions of the database. We explain our
architecture in further detail in Section II.

C. Project Timeline
• 4/18/2012: crawler operational.
• 4/21/2012: indexer operational.
• 4/28/2012: crawler and indexer integrated;

combined module operational across variable-
sized node networks.

• 4/29/2012: user interface completed.

• 5/3/2012: PageRank operational.
• 5/5/2012: server module functional.
• 5/6/2012: tuned ranking function.
• 5/8/2012: finished integrating components.

D. Division of Labor
We worked together as much as we could and

pair-programmed relatively often, which helped
ease component integration towards the end of the
project. Each team member contributed to most
modules. We also assigned individual
accountability for certain specific tasks-

Sanjay Paul: crawler functionality and Pastry
ring management.

Levi Cai: indexer functionality and Pastry
network testing.

Figure 1: High-Level Approach

2

Dan Kim: user interface and PageRank module.
Federico Nusymowicz: server module and

BerkeleyDB/AMI management.

II. ARCHITECTURE

A. Database
We store our data persistently using BerkleyDB.

Our implementation distributes BDB data
structures across several FreePastry peer nodes,
where each peer node takes responsibility for a
subset of the data. Our most relevant data
structures include:
• Pages, which contain the raw XML/HTML

content downloaded from a given URL,
PageRank information, and a list of the page’s
outgoing links. Each peer node takes
responsibility for a subset of URL hosts.

• HitLists, which mimic the Google data
structure going by the same name [1]. Each
HitList corresponds to a specific word within
a Page. HitLists also count the number of
times the term occurs within a document,
maintain position information for each word
occurrence, and hold additional term-ranking
information, such as whether the term was a
‘fancy hit’ (i.e. a title, header, or meta
information).

• HitBins, which aggregate all the HitLists for a
specific word. Individual nodes in the
network take responsibility for storing a
subset of word HitBins.

As shown in Figure 1, BDB data structures
serve as the main point of interface between our
three component processes.

B. Crawler / Indexer
Our crawler’s architecture borrows heavily from

Mercator’s design [2], with some simplifications
made in the interest of reducing development
overhead. Each crawler node operates as follows:

1. Poll the local BDB’s URL queue.
2. Enforce politeness; if the URL’s host was

recently pinged, move the URL to the back of
queue and repeat step 1.

3. Download the HTML/XML content and store
it as a Page in the local BDB.

4. Extract all links and route each one to the
node responsible for the URL’s host.

5. Go back to step 1.
Whenever a crawler node receives a link, it

checks whether the URL is a duplicate, and if so

the link gets discarded. Otherwise the link gets
added to the back of the node’s URL queue.

As soon as pages become available, the indexer
parses them one by one. Parsing entails forming
HitLists for each word in the content body and
then calculating the term’s TF factor. Figure 2
depicts a 2-node crawler & indexer process.

We designed our crawler / indexer with fault
tolerance in mind. The process regularly
checkpoints by syncing with disk, thereby
allowing the crawler and indexer to pick up from
where they stopped in the event of a crash. The
process is also highly scalable and stable – we
successfully ran it across 10 nodes and crawled
continuously with no problems.

Our Phase 1 architecture’s main drawback
regarding scalability was the fact that new nodes
could not dynamically join or leave the process
without impacting the overall network’s
execution. A possible future improvement could
involve periodic checks to dynamically
redistribute Pages.

After giving the process its shutdown signal, the
crawler stops running and the indexer sorts
HitBins by TF factor, in order to later improve our
servers’ query response speeds.

B. PageRank
After halting the crawler / indexer process, our

system moves on to compute PageRank. The

Figure 2: 2-Node Crawler/Indexer

3

PageRank calculation begins by aggregating Page
data at a single master node. This allowed for
better ordering of our results, enabling us to return
more authoritative, reliable sources. We
implemented PageRank using an iterative, pseudo-
distributed Hadoop job. The results from crawling
were then aggregated and fed into Hadoop.

Since calculating a URL's PageRank relies on
the rank of pages that link into that URL, and
since outgoing links compose other page’s ranks
in turn, we needed to iterate a large number of
times in order to come to an acceptable result.

Our map algorithm accepted URLs along with
their associated page ranks and outgoing links.
Then, in the combining stage, we aggregated an
entry’s PageRank by adding the scaled ranks of all
incoming URLs. We iteratively used these entries
in the reducing stage to calculate page ranks until
reaching some degree of convergence.

Defining the convergence function proved to be
a fairly non-trivial task. The iterative reduce step
took a long time to run (hours), and as an
additional challenge, determining the proper
threshold for ‘convergence’ proved to be more of
an art than a science. In the interest of time, we
chose a less sophisticated approach: set number
iteration. We found that although set number
iteration proved more inaccurate than a rigid
definition of ‘diff’ convergence, with a sufficient
number of iterations, the end values varied little
enough to consider them fairly accurate
PageRanks. As an added benefit, set number
iteration helped us predict the process’ runtime.

Once the PageRank algorithm completed, we
distributed PageRank scores across all network
nodes and appended them to HitLists in order to
later improve server response time.

C. Server
After all HitLists got updated with their relevant

PageRank scores, we switched each node to server
mode. Servers then began actively answering
queries. More specifically, servers:

1. Listened for query requests.
2. Split queries by term and requested the

corresponding HitBins from other servers.
3. Waited for HitBins to return and cached

HitBins for the most popular terms. Servers
only retrieved the top 10,000 entries (based
on each entry’s TF factor) from a given
HitBin in order to improve retrieval speed.

4. Servers then calculated document ranking
based on an augmented TF-IDF vector model.

5. Finally, servers returned the query results.

We implemented a Tomcat servlet in order to
route queries to our servers. The queries
themselves then got hashed and routed through the
Pastry ring, thus balancing computing load across
all server nodes and improving mean response
time.

Routing queries through Pastry provided the
unexpected side effect of fault tolerance, since
even in the event that a server node crashed, the
search engine still remained operational.

D. Ranking
Every returned HitBin contains HitLists sorted

by TF factor, which the indexer computes as:
freq(word,doc) / max[freq(any word,doc)]

…where word counts are double-weighted for
each of the ‘fancy hits’ described earlier. Servers
also gather the HitBin’s total size (n) when they
retrieve the bin’s top 10,000 entries. Additionally,
servers communicate with each other at startup in
order to calculate the total size of the corpus (N).
To determine a HitList’s TF-IDF weight, servers
calculate:

TF-IDF = TF * log(N/n)
Servers then weigh each query term according

to the formula:
wquery(word) = 0.5 + [0.5*freq(word,query) /

max(freq(any word,query))] * log(N/n)
For each Page referred to in one of the retrieved

HitLists, servers then calculate the cosine
similarity between the query and the page, and
scale by the Page’s PageRank in order to calculate
the final ranking score.

III. EVALUATION
A. Crawler / Indexer

The crawler and indexer were run as a coupled
pair in a single JVM process on each of ten total
Amazon Machine Instances on the EC2 cloud.
They were allocated a virtual memory size bound
in the range between 1 and 2 MBs (min/max).
Overflow data was pushed to the key-value store
provided by the open-sourced Berkeley DB
distribution and top-level caching (as well as that
provided by Berkeley DB) was exploited to
improve performance. Resource allocation was
distributed across the myriad and performance-
throttling resource sinks present in each process,
and these were primarily directed towards tracking
duplicate encountered URLs (cached), the URL
expansion frontier (breadth-first), and space
occupied by indexer entries en route between

4

machine nodes and from main memory to disk
storage. Each component was allocated an
explicitly bound capacity that varied by priority
and relative speed.

The internal construction of the crawler-indexer
reflected their outward performance characteristic
in that the crawler thread pool was relatively small
(nine total was found to be an optimal value) and
the indexer thread pool much larger (thirty threads
was used though less testing was done to pinpoint
an optimal). This follows naturally from the fact
that much of the crawler’s operation is network-IO
bound due to intra-node URL passing and page
downloading with some unavoidable disk
overhead due to a non-negligible cache miss rate
(i.e. often >20%, but still tolerable due to locality).
On analysis, the average crawl spent less than
10% of its time performing computations – the
rest was due to blocked I/O. By contrast, the
indexer had much more opportunity to exploit
parallelization due to its inherently compute-
bound primary operations. An addendum in this
regard was the fact that indexed buckets needed to
be shuffled between machine nodes, resulting in
large messages being directly routed to nodes
(based on hash).

Aside from using a SLRU cache replacement
policy on important top-level objects, we managed
to achieve high performance by adopting a “route-
to-final” policy – in effect, any object (i.e. indexer
entry, URL, etc) that was to be pushed from a
source to a sink within the system was buffered
and hastily evicted to its final destination. The
objective here was to clear space in memory by
making some bandwidth concessions and to
minimize time wastage caused by objects pending
a push to the endpoint machine instance. This was
an exceedingly effective practice, though it led,
not surprisingly, to the side effect of high-
frequency message passing and overflow within
the system. The FreePastry distributed hashing
scheme utilized to coordinate the machines proved
to be less tolerant to high network traffic than we
anticipated and we had to implement coherent
buffering, throttling, and node-rotation schemes in
order to achieve robustness, which was strained by
adverse message queue overflows and locking
exceptions due to timeouts. While buffering (with
direct message-passing) and throttling were fairly
intuitive countermeasures, we also chose to cycle
messaging allowance by triggering nodes to flush
their buffers to the system in sequence.

The crawler and indexer performed well above
expectation with an average throughput of 160
pages crawled and 117 pages indexed per minute.

In a crawling run of approximately 100 minutes,
we achieved an indexed corpus size of about
~128K pages. The story, however, was markedly
different on an individual machine-to-machine
basis. In short, many machines went massively
under-utilized due to discrepancies caused by
inconsistent hashing. Whereas the machine nodes
attempt enforce a uniform hash, the distribution of
hashed content (in this case of the URLs and
keywords) achieved a perceptible skew. Future
utilization of the crawler-indexer might consider
improving its behavior by either virtualizing nodes
(and allowing dynamic reassignment of hashes)
and/or leveraging machine learning principles to
improve the system’s anticipated distribution of
hashed content.

B. Server
Our system was designed to provide fast results,

where much of the system’s time was spent on
pre-processing results. As a result, each page on
average had about 80B of associated data, after the
nearly 1.5 hour crawl and indexing session, the
fastest server had nearly 2.2GB of data stored.
Result retrievals of single words were near
instantaneous regardless if it was stored in the
cache or not, and multi-word searches were not
much longer.

“This is the coolest place on earth” returned in
approximately 2.7 seconds and when queried
again it returned on average in 1.2 seconds due to
the cache. Several other 7+ word queries returned
at similar time intervals with over several hundred
results each. Single word entries are much faster.

IV. LESSONS LEARNED
Building a search engine was an incredibly rich

experience – there were countless opportunities
for optimizations, tweaks, and improvements.
Some of our ideas proved so interesting that we
often had trouble focusing on completing the
project’s most basic features. We focused so much
on optimizing our crawler, for example, that by
the end of the project we barely had time to refine
our PageRank algorithm. If we had the chance to
start over, we would definitely get all the basic
features working on a basic level before starting to
polish any part of our code base.

We also learned about the importance of clear
interfaces. After our first few nights of
programming together, we all thought we had a
relatively thorough understanding of each
component’s architecture and required data
structures. After splitting the work, however, we
quickly realized how wrong we were. Lack of

5

clearly specified interfaces ended up costing us
countless hours of integration effort.

IV. CONCLUSION
In summary, we unanimously concur that

architecting this system was by far the most
challenging task any of us have ever undertaken,
but also among the most rewarding. We gained an
appreciation for a wide breadth of challenges
inherent to massively scaled system design and the
solutions they necessitated. On a fundamental
level, a search engine handily incorporates almost
every relevant facet of distributed system design,
ranging from parallelization considerations to

robustness to scalability and high-performance
operation. The lessons we take away from the
experience will undoubtedly carry with us well
into the future.

REFERENCES

[1] S. Brin and L. Page. “The Anatomy of a Large-
Scale Hypertextual Search Engine”. Stanford
University. Computer Science Department, 1998.

[2] M. Najork and A. Heydon. “High-Performance

Web Crawling”. Kulwer Academic Publishers, Inc.
Compaq SRC, September 2001.

