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ABSTRACT 
 

Poogle is a search engine that runs on a distributed network of AWS machines. This paper 
describes, analyzes and evaluates the Poogle system. 

 
 

I. INTRODUCTION 

A. Project Goals 
We built Poogle with certain objectives in mind. 

Our primary goals included: 
• Efficiently crawling a large corpus 
• Responding to several concurrent queries in a 

timely fashion 
• Providing a clean user interface 
• Serving up high-quality search results 
• Developing a highly scalable system able to 

operate across a large network of peers 

B. High-Level Approach 
Our system operates in three distinct phases. 

Phase 1 consists of a process that crawls the web, 
and then indexes pages as they become available. 
The second phase calculates PageRank for all 
indexed content and readies the system to answer 
queries efficiently. Finally, a third process 
instantiates a server that answers user queries by 
calculating document rankings and returning 
search results in order of relevance. Figure 1 
depicts the high-level approach. 

Each of the processes relies upon a distributed 
network of peer nodes. Individual nodes are 
responsible for both running the modules and for 
storing portions of the database. We explain our 
architecture in further detail in Section II. 

C. Project Timeline 
• 4/18/2012: crawler operational. 
• 4/21/2012: indexer operational. 
• 4/28/2012: crawler and indexer integrated; 

combined module operational across variable-
sized node networks. 

• 4/29/2012: user interface completed. 

• 5/3/2012: PageRank operational. 
• 5/5/2012: server module functional. 
• 5/6/2012: tuned ranking function. 
• 5/8/2012: finished integrating components. 

D. Division of Labor 
We worked together as much as we could and 

pair-programmed relatively often, which helped 
ease component integration towards the end of the 
project. Each team member contributed to most 
modules. We also assigned individual 
accountability for certain specific tasks- 

Sanjay Paul: crawler functionality and Pastry 
ring management. 

Levi Cai: indexer functionality and Pastry 
network testing. 

Figure 1: High-Level Approach 
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Dan Kim: user interface and PageRank module. 
Federico Nusymowicz: server module and 

BerkeleyDB/AMI management. 
 

II. ARCHITECTURE 

A. Database 
We store our data persistently using BerkleyDB. 

Our implementation distributes BDB data 
structures across several FreePastry peer nodes, 
where each peer node takes responsibility for a 
subset of the data. Our most relevant data 
structures include: 
• Pages, which contain the raw XML/HTML 

content downloaded from a given URL, 
PageRank information, and a list of the page’s 
outgoing links.  Each peer node takes 
responsibility for a subset of URL hosts. 

• HitLists, which mimic the Google data 
structure going by the same name [1]. Each 
HitList corresponds to a specific word within 
a Page. HitLists also count the number of 
times the term occurs within a document, 
maintain position information for each word 
occurrence, and hold additional term-ranking 
information, such as whether the term was a 
‘fancy hit’ (i.e. a title, header, or meta 
information). 

• HitBins, which aggregate all the HitLists for a 
specific word. Individual nodes in the 
network take responsibility for storing a 
subset of word HitBins. 

As shown in Figure 1, BDB data structures 
serve as the main point of interface between our 
three component processes. 

B. Crawler / Indexer 
Our crawler’s architecture borrows heavily from 

Mercator’s design [2], with some simplifications 
made in the interest of reducing development 
overhead. Each crawler node operates as follows: 

1. Poll the local BDB’s URL queue. 
2. Enforce politeness; if the URL’s host was 

recently pinged, move the URL to the back of 
queue and repeat step 1. 

3. Download the HTML/XML content and store 
it as a Page in the local BDB. 

4. Extract all links and route each one to the 
node responsible for the URL’s host. 

5. Go back to step 1. 
Whenever a crawler node receives a link, it 

checks whether the URL is a duplicate, and if so 

the link gets discarded. Otherwise the link gets 
added to the back of the node’s URL queue. 

As soon as pages become available, the indexer 
parses them one by one. Parsing entails forming 
HitLists for each word in the content body and 
then calculating the term’s TF factor. Figure 2 
depicts a 2-node crawler & indexer process. 

We designed our crawler / indexer with fault 
tolerance in mind. The process regularly 
checkpoints by syncing with disk, thereby 
allowing the crawler and indexer to pick up from 
where they stopped in the event of a crash. The 
process is also highly scalable and stable – we 
successfully ran it across 10 nodes and crawled 
continuously with no problems. 

Our Phase 1 architecture’s main drawback 
regarding scalability was the fact that new nodes 
could not dynamically join or leave the process 
without impacting the overall network’s 
execution. A possible future improvement could 
involve periodic checks to dynamically 
redistribute Pages. 

After giving the process its shutdown signal, the 
crawler stops running and the indexer sorts 
HitBins by TF factor, in order to later improve our 
servers’ query response speeds. 

B. PageRank 
After halting the crawler / indexer process, our 

system moves on to compute PageRank. The 

Figure 2: 2-Node Crawler/Indexer 
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PageRank calculation begins by aggregating Page 
data at a single master node. This allowed for 
better ordering of our results, enabling us to return 
more authoritative, reliable sources. We 
implemented PageRank using an iterative, pseudo-
distributed Hadoop job. The results from crawling 
were then aggregated and fed into Hadoop. 

Since calculating a URL's PageRank relies on 
the rank of pages that link into that URL, and 
since outgoing links compose other page’s ranks 
in turn, we needed to iterate a large number of 
times in order to come to an acceptable result. 

Our map algorithm accepted URLs along with 
their associated page ranks and outgoing links. 
Then, in the combining stage, we aggregated an 
entry’s PageRank by adding the scaled ranks of all 
incoming URLs. We iteratively used these entries 
in the reducing stage to calculate page ranks until 
reaching some degree of convergence. 

Defining the convergence function proved to be 
a fairly non-trivial task. The iterative reduce step 
took a long time to run (hours), and as an 
additional challenge, determining the proper 
threshold for ‘convergence’ proved to be more of 
an art than a science. In the interest of time, we 
chose a less sophisticated approach: set number 
iteration. We found that although set number 
iteration proved more inaccurate than a rigid 
definition of ‘diff’ convergence, with a sufficient 
number of iterations, the end values varied little 
enough to consider them fairly accurate 
PageRanks. As an added benefit, set number 
iteration helped us predict the process’ runtime. 

Once the PageRank algorithm completed, we 
distributed PageRank scores across all network 
nodes and appended them to HitLists in order to 
later improve server response time. 

C. Server 
After all HitLists got updated with their relevant 

PageRank scores, we switched each node to server 
mode. Servers then began actively answering 
queries. More specifically, servers: 

1. Listened for query requests. 
2. Split queries by term and requested the 

corresponding HitBins from other servers. 
3. Waited for HitBins to return and cached 

HitBins for the most popular terms. Servers 
only retrieved the top 10,000 entries (based 
on each entry’s TF factor) from a given 
HitBin in order to improve retrieval speed. 

4. Servers then calculated document ranking 
based on an augmented TF-IDF vector model. 

5. Finally, servers returned the query results.  

We implemented a Tomcat servlet in order to 
route queries to our servers. The queries 
themselves then got hashed and routed through the 
Pastry ring, thus balancing computing load across 
all server nodes and improving mean response 
time. 

Routing queries through Pastry provided the 
unexpected side effect of fault tolerance, since 
even in the event that a server node crashed, the 
search engine still remained operational. 

D. Ranking 
Every returned HitBin contains HitLists sorted 

by TF factor, which the indexer computes as: 
freq(word,doc) / max[freq(any word,doc)] 

…where word counts are double-weighted for 
each of the ‘fancy hits’ described earlier. Servers 
also gather the HitBin’s total size (n) when they 
retrieve the bin’s top 10,000 entries. Additionally, 
servers communicate with each other at startup in 
order to calculate the total size of the corpus (N). 
To determine a HitList’s TF-IDF weight, servers 
calculate: 

TF-IDF = TF * log(N/n) 
Servers then weigh each query term according 

to the formula: 
wquery(word) = 0.5 + [0.5*freq(word,query) / 

max(freq(any word,query))] * log(N/n) 
For each Page referred to in one of the retrieved 

HitLists, servers then calculate the cosine 
similarity between the query and the page, and 
scale by the Page’s PageRank in order to calculate 
the final ranking score. 

 

III. EVALUATION 
A. Crawler / Indexer 

The crawler and indexer were run as a coupled 
pair in a single JVM process on each of ten total 
Amazon Machine Instances on the EC2 cloud. 
They were allocated a virtual memory size bound 
in the range between 1 and 2 MBs (min/max). 
Overflow data was pushed to the key-value store 
provided by the open-sourced Berkeley DB 
distribution and top-level caching (as well as that 
provided by Berkeley DB) was exploited to 
improve performance. Resource allocation was 
distributed across the myriad and performance-
throttling resource sinks present in each process, 
and these were primarily directed towards tracking 
duplicate encountered URLs (cached), the URL 
expansion frontier (breadth-first), and space 
occupied by indexer entries en route between 
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machine nodes and from main memory to disk 
storage. Each component was allocated an 
explicitly bound capacity that varied by priority 
and relative speed. 

The internal construction of the crawler-indexer 
reflected their outward performance characteristic 
in that the crawler thread pool was relatively small 
(nine total was found to be an optimal value) and 
the indexer thread pool much larger (thirty threads 
was used though less testing was done to pinpoint 
an optimal). This follows naturally from the fact 
that much of the crawler’s operation is network-IO 
bound due to intra-node URL passing and page 
downloading with some unavoidable disk 
overhead due to a non-negligible cache miss rate 
(i.e. often >20%, but still tolerable due to locality). 
On analysis, the average crawl spent less than 
10% of its time performing computations – the 
rest was due to blocked I/O. By contrast, the 
indexer had much more opportunity to exploit 
parallelization due to its inherently compute-
bound primary operations. An addendum in this 
regard was the fact that indexed buckets needed to 
be shuffled between machine nodes, resulting in 
large messages being directly routed to nodes 
(based on hash). 

Aside from using a SLRU cache replacement 
policy on important top-level objects, we managed 
to achieve high performance by adopting a “route-
to-final” policy – in effect, any object (i.e. indexer 
entry, URL, etc) that was to be pushed from a 
source to a sink within the system was buffered 
and hastily evicted to its final destination. The 
objective here was to clear space in memory by 
making some bandwidth concessions and to 
minimize time wastage caused by objects pending 
a push to the endpoint machine instance. This was 
an exceedingly effective practice, though it led, 
not surprisingly, to the side effect of high-
frequency message passing and overflow within 
the system. The FreePastry distributed hashing 
scheme utilized to coordinate the machines proved 
to be less tolerant to high network traffic than we 
anticipated and we had to implement coherent 
buffering, throttling, and node-rotation schemes in 
order to achieve robustness, which was strained by 
adverse message queue overflows and locking 
exceptions due to timeouts. While buffering (with 
direct message-passing) and throttling were fairly 
intuitive countermeasures, we also chose to cycle 
messaging allowance by triggering nodes to flush 
their buffers to the system in sequence.  

The crawler and indexer performed well above 
expectation with an average throughput of 160 
pages crawled and 117 pages indexed per minute. 

In a crawling run of approximately 100 minutes, 
we achieved an indexed corpus size of about 
~128K pages. The story, however, was markedly 
different on an individual machine-to-machine 
basis. In short, many machines went massively 
under-utilized due to discrepancies caused by 
inconsistent hashing. Whereas the machine nodes 
attempt enforce a uniform hash, the distribution of 
hashed content (in this case of the URLs and 
keywords) achieved a perceptible skew. Future 
utilization of the crawler-indexer might consider 
improving its behavior by either virtualizing nodes 
(and allowing dynamic reassignment of hashes) 
and/or leveraging machine learning principles to 
improve the system’s anticipated distribution of 
hashed content. 

B. Server 
Our system was designed to provide fast results, 

where much of the system’s time was spent on 
pre-processing results. As a result, each page on 
average had about 80B of associated data, after the 
nearly 1.5 hour crawl and indexing session, the 
fastest server had nearly 2.2GB of data stored. 
Result retrievals of single words were near 
instantaneous regardless if it was stored in the 
cache or not, and multi-word searches were not 
much longer. 

“This is the coolest place on earth” returned in 
approximately 2.7 seconds and when queried 
again it returned on average in 1.2 seconds due to 
the cache. Several other 7+ word queries returned 
at similar time intervals with over several hundred 
results each. Single word entries are much faster. 

 

IV. LESSONS LEARNED 
Building a search engine was an incredibly rich 

experience – there were countless opportunities 
for optimizations, tweaks, and improvements. 
Some of our ideas proved so interesting that we 
often had trouble focusing on completing the 
project’s most basic features. We focused so much 
on optimizing our crawler, for example, that by 
the end of the project we barely had time to refine 
our PageRank algorithm. If we had the chance to 
start over, we would definitely get all the basic 
features working on a basic level before starting to 
polish any part of our code base. 

We also learned about the importance of clear 
interfaces. After our first few nights of 
programming together, we all thought we had a 
relatively thorough understanding of each 
component’s architecture and required data 
structures. After splitting the work, however, we 
quickly realized how wrong we were. Lack of 
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clearly specified interfaces ended up costing us 
countless hours of integration effort. 

 

IV. CONCLUSION 
In summary, we unanimously concur that 

architecting this system was by far the most 
challenging task any of us have ever undertaken, 
but also among the most rewarding. We gained an 
appreciation for a wide breadth of challenges 
inherent to massively scaled system design and the 
solutions they necessitated. On a fundamental 
level, a search engine handily incorporates almost 
every relevant facet of distributed system design, 
ranging from parallelization considerations to 

robustness to scalability and high-performance 
operation. The lessons we take away from the 
experience will undoubtedly carry with us well 
into the future.   
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